
Parsing Strategies
for BWT Compression

R. Yugo Kartono Isal & Alistair Moffat

Presented by Thorin Tabor

Burrows-Wheeler Transform:
In Practice
● Encoding with the Burrows-Wheeler Transform

typically has three steps:
✔ Apply the BWT algorithm to the text to

permute it.
✔ Apply a Move-to-Front algorithm to the text.
✔ Finally, do some sort of entropy encoding to

the result, such as Huffman encoding or
Arithmetic encoding.

● Sometimes run-length codes are introduced
between any of these steps.

BWT in Practice: Part II

● The BWT algorithm permutes the text into a
pattern that is more easily encoded by creating
runs and areas of repeated characters in the string.

● The MTF algorithm rearranges the pattern such
that more frequently used characters tend to be
near the front of the string and less frequently used
characters tend to be towards the end.

● Entropy encoding (like Huffman encoding)
compresses the text with some form of lossless
compression.

Move-to-Front Algorithm

● Transverses a string from start to end, looking the index of the
encountered character in an array that starts as [1...n] in order.

● When a character is encountered in encoding the string, it moves
that character to the front of the string, assigns new indexes and
continues.

To Encode: 524700717
Initial List: (0,1,2,3,4,5,6,7)

Step 1: The first number in
the sequence is 5, which
appears at index 5. We add
a 5 to the output.
New Output: 5
New List: (5,0,1,2,3,4,6,7)

New Output: 53
New List: (2,5,0,1,3,4,6,7)

Step 2: The next number is
2, which now appears at
index 3. Add to output and
permute list.

Etc...
Final Output: 535740151

The Unit of Transmission

● Most studies of BWT compression involve
transmuting the text by rearranging blocks of bites
that correspond to ASCII characters.

● There is no reason this unit of partition has to be
so and a number of other parsing strategies exist
that could be used.

● For example, we could partition the text a series of
words instead of a series of ASCII characters.

● Using another parsing strategy may result in better
compression.

The Aim of This Paper

● This paper examines an alternate way of parsing
the text and permuting it other than by ASCII
character.

● To do this it proposes prepending a fourth step
onto the usual three for BWT compression. This
fourth step is parsing, where the units to transform
are determined.

● The paper looks at how to deal with non-character
permutations at all three steps in the compression
process.

Words as Tokens

● You could partition text into words and then permute the
worlds instead of the characters.

● A benefit in compression of this is that the later characters
in words are in effect assigned probabilities influences by
the previous characters in a word. This means that the
later characters are sometimes unnecessary.

● A drawback of this approach is that the tokens are no
longer self-describing—that is a dictionary (whether
explicit or implicit) has to be provided to look up what
code relates to which word (having partitioning based on
ASCII characters gets around this by using a standard
dictionary: ASCII.)

Higher-Order Word-Based Models

● More complex word-based partitioning may also
be considered.

● This, for example, may be useful because while
the English word “the” may be the most common
word in a text, but the sequence of words “the the”
will usually be extremely uncommon.

● Also, some pairings of words will be more
common than others, for example “block sorting”
or “one ring.”

Storing the Dictionary

● Since partitioning into words requires the use of a
dictionary of words, both encoder and decoder
have to have access to said dictionary.

● One way to achieve this is to assume that there is a
separate channel of communication between the
encoder and decoder that can transmit the
dictionary.

● The other way is to embed the dictionary in the
symbol stream and through that, transmit it
between encoder and decoder.

Dictionary Example

● Consider the following example on 2-grams:

String: spain.rain.mainly.plain.

Dictionary: sp, ai, n., ra, in, .m, nl, y., pl

Dictionary Sequence: spain.rain.mnly.pl

Encoded String: 0, 1, 2, 3, 4, 5, 1, 6, 7, 8, 1, 2

How Well Do Word-Based Models
Perform?
● Variations used on Canterbury corpus' files
● Numbers are expressed in the unit “bits per

character.”
● The actual compression showed little difference

between individual character and words.

File 1-Gram 2-Gram 3-Gram 4-Gram Words
2.74 3.22 3.69 3.96 2.73
1.62 1.88 2.14 2.39 1.53
1.71 0.88 2.04 2.29 1.6
1.99 1.98 1.98 1.99 2.05

asy oulik.txt
world192.txt

bible.txt
E.coli

Other Subsequent Alternations

● Assuming that an alternate (non-character) parsing
method is introduced initially into BWT
compression, it follows that it may be beneficial to
question how this affects the other steps in the
compression.

● These are the BWT algorithm, the MTF algorithm
and the entropy encoder.

● Of these three, it is changes to the BWT algorithm
that is the least likely to have a further impact, as it
is the backbone of what we're working around
anyway.

Entropy Encoding

● The earlier results were attained from using a large
alphabet arithmetic encoder, treating all symbols
uniformly.

● By allowing more recent tokens to exert a greater
influence over the probabilities that earlier ones,
we can predict the next token a greater portion of
the time.

● By using something called a structured knowledge
we can exploit this knowledge to get better
compression.

Conclusion

● Breaking up a string by character and applying all
the steps of BWT compression is now the only
way to approach BWT compression

● Similar compression can be attained by breaking
up the string into word tokens and applying the
BWT compression.

● Then by tweaking the other elements of BWT
compression (such as entropy encoding) we can
get some improvement in the compression.

